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Abstract

This article discusses the essential equivalence of second-order
-impedance control with force feedback and proportional gain
explicit force control with force feedforward. This is first done
analytically by reviewing each control method and showing
how they mathematically correspond for constrained manipula-
tor control. For stiff environments the correspondence is exact.
However, even for softer environments, a similar response of
the system is indicated. Next, the results of an implementation
of these control schemes on the CMU DD Arm II are pre-
sented, confirming the predictions of the analysis. These results
experimentally demonstrate that proportional gain force control
and impedance control, with and without dynamics compensa-
tion, have equivalent response to. commanded force trajectories.

1. Introduction

There is an entire class of tasks that implicitly require
controlling the force of interaction between a manipu-
lator and its environment: pushing, scraping, grinding,
pounding, polishing, twisting, etc. Thus, force control of
the manipulator becomes necessary in at least one of the
degrees of freedom of the manipulator; the other degrees
of freedom remain position controlled. Mason (1981) for-
malized this idea and called it hybrid control. Simply put,
the manipulator should be force controlled in directions
in which the position is constrained by environmental
interaction, and position Controlled in all orthogonal di-
rections.

The hybrid control formalism does not specify what
particular type of position or force control should be
used. It only partitions the space spanned by the total
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degrees of freedom into one subspace in which position
control is employed, and another in which force control
is employed. In the position control subspace, simple

strategies have proven adequate (e.g., PID), while sophis-

ticated enhancements have improved performance (e.g.,
computed torque control, adaptive control) (Dubowsky
and DesForges 1979; Koivo and Guo 1981; Hsia 1986;
Slotine and Li 1987; Khosla 1988). However, in the
force control subspace, two main conceptual choices
have emerged: explicit force control and impedance con-
trol. Figure 1 shows two simple block diagrams of these
control schemes; the transfer function G represents the
dynamics of the arm/sensor/environment system, H is
the force controller, I is the impedance controller, and u
is the control signal. The major difference between these
schemes is the commanded value: explicit force con-
trol requires commanded force, while impedance control
requires commanded position. In order for these to be
feedback controllers, explicit force control needs force
measurement, while impedance control needs position
measurement. In addition, impedance control requires
force measurement; without it an impedance controller
reduces to a position controller.

Ideally, an explicit force controller attempts to make
the manipulator act as a pure force source, independent
of position. Like position control, the obvious first choice
has been some manifestation of PID control (i.e., P, PD,
PI, etc.). We have previously shown that integral gain
control is thé best among these simple strategies (Volpe
and Khosla 1993a). ) _ .

Alternatively, impedance control has been presented
as a method of stably interacting with the environment.
This is achieved by providing a dynamic relationship
between the robot’s position and the force it exerts. A
complete introduction to impedance control is beyond the
scope of this discussion, and the reader is referred to the
previous work of other researchers (Hogan 1985; Kaze-

The International Journal of Robotics Research




— H -~ G >

t

(a) Explicit force control.

— 1 'G Xm

t

Yy

(b) Impedance control.

Fig. 1. Block diagrams of the two main types of force regulation.

rooni et al. 1986). The basic tenet of impedance control
is that the arm should be controlled so that it behaves as
a mechanical impedance to positional constraints imposed
by the environment.
For linear impedance relationships, the controller may
be separated into two transfer functions, I(z) and I(f).
With these functions, the impedance control block ‘
diagram is modified as in Figure 2 to show that the
impedance controller contains an internal explicit force
controller. Furthermore, the feedback term, ZTm, may be
ignored sometimes. For instance, it may be ignored if
its variation is slow compared to the dynamics of the
close loop system or if the magnitude change is smaller
than the resolution of the position measuring capabilities
of the system. In these cases, the system may be con-
sidered open loop With respect to position and velocity,
and impedance control reduces directly to explicit force
control. "
. This article explores the exact correspondence between
“explicit force control and impedance control. In particular,
it is shown that impedance controllers that utilize force
feedback must be second order; lesser order impedance
relations are essentially open-loop to force (Volpe and
Khosla 1991; Goldenberg 1992). Analysis of the second-
order impedance controller reveals that it has an algebraic
structure akin to proportional gain explicit force control
with feedforward reference force. This correspondence
becomes exact when the position feedback is constant.
In practice, this criterion is regularly met by stiff envi-
ronments or soft environments in equilibrium with the
arm. ]
We have implemented both impedance control with
and without manipulator dynamics compensation, as well
as proportional gain explicit force control. These imple-
mentations were in six DOFs on the <CMU DD Arm II.
The results show the same response for the impedance
and explicit force control strategies, even for the case
of soft environment contact. They also experimentally
confirm what is analytically indicated: the equivalence
of second-order impedance control with force feedback
and proportional gain force control with reference force
feedforward. , »
This article is organized as follows. First, the arm and
environment models employed for this discussion will

be reviewed. Second, proportional gain explicit force
control is reviewed and analyzed. It is also shown how
the proportional gain values can be as low as negative
one. Third, impedance control, with and without dynam-
ics compensation, is reviewed and analyzed. It is shown
that only second-order impedance control utilizes force
feedback information. It is also shown that second-order
impedance control employs proportional -gain explicit
force control, and that for stiff environments the two be-
come the same controller. In the last part of this article,
the insights and predictions from analysis of the con-
trollers are experimentally verified with force-trajectory
and impact tests.

2. Arm/ Sensor/Environmént Model

The physical system employed in this study comprises
the CMU DD Arm 11, a Lord 15-50 force sensor, and an
environment of a cardboard box with an aluminum plate
resting on top. The box rests on a table that is consider-
ably more stiff than the box and is therefore considered
ground for these tests. The force sensor is mounted on
link 6 of the CMU DD Arm II. Attached to the force
sensor is a steel probe with a brass weight on its end.
The brass weight serves as an end-effector substitute and .
provides a flat, stiff surface for applying forces on the
environment. More details can be found in Volpe and
Khosla 1993b; 1994a).
~ This system is more complex than might first be
thought. Since the arm is not attached to the surface,
oscillations can easily lead to separation from the surface.
In the case of separation, the system plant is nonlinear.
Furthermore, we have previously discussed how attach-
ment to the environment (as with a gripper) increases
the envelope of stability (Volpe and Khosla 1993). For
the discussion and experiments presented in this article,
the system will be modeled without separation, but no
physical attachment is made. /
Previous research has indicated that a fourth-order
model of the arm/sensor/environment as shown in Fig-
ure 3, is necessary for force control analysis (Eppinger
and Seering 1986; Volpe and Khosla 1994a). The. transfer
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Fig. 2. Impedance control block diagram redrawn to show the inner explicit force controller.

function of this system is:

“(mps* + c3s + ka)k,
(mps? + (c2 + ¢3)s + (k2 + k3))
(mas® +c1s+ k) + (mps* + czs + k3)(cas + k)

where the measured force, Fy,, is equal to kx(z4 — =B).
We have experimentally extracted parameter values for
the components of this model for the box/plate environ-
ment described. Mathematical and experimental details
can be found elsewhere (Volpe and Khosla 1994a).

The pole/zero locations indicated by the extracted
parameters differ greatly from those assumed by other
researchers (Eppinger and Seering 1986; 1987). Figure 4
shows all but the leftmost pole, which is at —28, 000
on the real axis. The complex pole pair (with real value
~ —12) is due mainly to the environment. The other
pole pair (on the real axis) is due mainly to the sensor
dynamics. It can be seen that the sensor poles are fairly
far removed from the environmental ones, and are located
- farther into the left half-plane. The leftmost sensor pole
(at —28,000) will be ignored.

Utilizing the plant model developed, it is now possible
to analyze its response with both proportional gain ex-
plicit force control and impedance control. This will be
done in the following sections.

3. Proportional Gain Explicit Force Control

The first controller to be discussed is proportional gain
explicit force control. The chosen form of this controller

1S:
r=JTu+g, , )

where T is a vector of the actuation torques, J is the ma- -

nipulator Jacobian, g is the gravity compensation torque
" vector, and u is the control signal vector comprising com-
ponents (Volpe and Khosla 1993a):

u = f. +Kfp(fc_fm) — KyZm, (€)]

where subscripts ¢ and m denote the commanded and
measured quantities, respectively. The feedforward term,
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fe, is necessary to provide a bias force when the force
error is zero. Since the velocity gain, K, adds damping
directly to the system plant, G, the closed-loop transfer
function with the feedforward term-is:
Fn, (1+Kp)G
F,  1+EKpG’
This is a Type 0 System and will have a nonzero steady-
state error for a step input. The root locus of this system
is shown in Figures 4 and 5. The corresponding Bode
plots are shown in Figure 6. As can be seen from the root
locus, proportional control makes the system more oscil-
latory and can make it unstable. The Bode plots further
illustrate this problem. There is a resonance peak from
the environment dynamics at approximately 100rad/s.
After this peak there is a 40-dB/decade drop-off, which
gives a minimum phase margin of ~ 15° at Ky ~ 1.

The addition of a low-pass filter in the feedback loop
can improve the response by introducing a dominant pole
on the real axis (An-and Hollerbach 1987). However, this
pole placement and the resultant behavior of the system
closely match that provided by integral control (Volpe and
Khosla 1993a), and therefore it will not be considered
further. '

It will prove useful later (in the discussion of
impedance control) to review the consequences of us-
ing the feedforward term in equation (3) (Volpe and
Khosla 1993b). It is usually desirable that the feedfor-
ward gain be unity so that the environmental reaction
force will be canceled during steady state. Furthermore,
if the sensor dynamics of the plant are ignored and the
natural feedback loop of the reaction force is considered,
the plant may be reformulated as G = G’ /(1 + G’), where

e

- G’ represents the dynamics of the arm/environment only.

Substitution of this reduced model into the transfer func-
tion of equation (4) yields: ‘ '

F, 1+(+EKp& ©)
_ K6 ‘ ©
/ A
1+K.G

where K/, = 1 + K. Thus, the proportional gain of the
original controller, Kz,, may be as small as negative one.
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root locus crossing to the right half-plane in Figure 5.

Figure 7 shows the proportional gain force control root
locus for gains as low as —1. We have previously shown
the utility of negative gains for impact control (Volpe and
Khosla 1993b). Other researchers have also discussed

the use of negative gains, but usually within the context
of impedance control (Hamilton 1988; Hogan 1987). It
will be seen in the following sections that the impedance
controllers for which this result was obtained actually
contain proportional gain explicit force control.

4. Second-Order Impedance Control

Impedance control is a strategy that controls the dynamic
relation between the manipulator and the environment.
The force exerted on the environment by the manipulator
is dependent on its position and its impedance. Usually
- this relation is expressed in Cartesian space as:
f=Z@), Q)
where f, z, and Z, are force, position, and impedance.
The impedance consists of two components: that which is
physically intrinsic to the manipulator, and that which is
given to the manipulator by active control. It is the goal
of impedance control to mask the intrinsic properties of
the arm and replace them with the target impedance.

The impedance relation can have any functional form.
It has been shown that general impedances are useful
for obstacle avoidance (Hogan 1985; Khatib 1986; Volpe
and Khosla 1990). However, it will be made clear in this
section that sensor-based, feedback-controlled interaction
with the environment is best achieved if the impedance
is linear and of second order at most. This is for two
reasons. First, the dynamics of a second-order system
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are well understood and familiar. Second, for higher or-
der systems, it is difficult to obtain measurements for
closed-loop control corresponding to the higher order
state variables.

To implement impedance control, model-based control
can be used. This type of scheme relies on the inverse
of the Jacobian. A second type of controller that uses the
transpose of the Jacobian is sometimes employed. Both
forms of impedance control will be shown:to contain pro-
portional gain explicit force control (with feedforward
force). Also, if the position feedback is essentially con-
stant, as when in contact with an environment of any
appreciable stiffness, impedance control reduces directly
to proportional gain force control.

The next sections are organized as follows. First, the
order of the desired impedance will be discussed, and the
implications for implementation will be shown. Second,
model-based impedance control will be reviewed, and
the reduced form of impedance control without dynamics
compensation will presented. Third, it will be shown how

* each of these schemes contains an internal proportional

gain force control loop that will determine the system
response when in contact with a stiff environment.

4.1. Zeroth, First-, and Second-Order Impedance

A linear impedance relation may be represented in the
Laplace domain as:
F=2Z(X. €]

The order of the polynomial Z(s) is considered the order
of the impedance.

The International Journal of Robotics Research
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The simplest form of an impedance controller has a
zeroth order impedance. In this case Z is a constant and

F=KX. ©)

The impedance parameter K is the desired stiffness of the
manipulator and is typically determined by the sum of the
actuator and controller stiffnesses. If the actuators have
no intrinsic stiffness (as in the case of the CMU DD Arm
II), the active position feedback gain dictates the apparent
stiffness of the arm. :

A more typical form of an impedance controller is a
first-order impedance. In this case,

F=(Cs+ K)X. (10)

The added parameter C' is the desired damping of the
manipulator and is equal to the sum of the active and
natural damping. Since active damping can be modified,
C can take on any value that maintains stability. In fact,
negative active damping can be used to eliminate the ap-
pearance of any damping in the arm (due to gear friction
and other causes). This is rarely desirable, since damping
has a stabilizing effect.

Finally, a more complete form of impedance control is
provided by the second-order type,

F=(Ms$+Cs+K)X.

The parameter M is the desired inertia of the manipu-
lator. While the intrinsic inertia of the arm is due to its
mass, it can be modified by active feedback. From the
previous two cases, it follows that acceleration feedback
can be used for this purpose. In this case, the value of ac-
tive inertia is the acceleration feedback gain, and its value
can be used to adjust M. Few researchers have proposed
such acceleration feedback schemes for impedance con-
trol (Goldenberg 1988; Tourassis 1988). This is because

(11)

an acceleration measurement typically requires a second
derivative, which will be extremely noisy. Alternatively,
the force may be measured and the acceleration com-
manded. This is typically the method employed, as will
be shown.

4.2. Manipulator Model-Based Control

Manipulator model-based control involves the use of a
dynamic model of the manipulator to determine the actu-
ation torques, T (Bejczy 1974). Model-based impedance
control may be summarized by the following equations
(Hogan 1985; Volpe 1990):

T = D@0 + h(8,,0:) + g0m) + I O  (12)

u=J"16,) % — 3(6,,)0,] 13)
%, = M [CAX + KAx —f,,] 14)
Ax =x, — F(6,,) 15)
Ax =X, — J(0.n)0,. (16)

Equation (12) compensates for the dynamics of the ma-
nipulator with inertia matrix D, Coriolis and centripetal
force vector h, and gravitational force vector g. Equa-
tion (13) describes the control signal in terms of the
desired Cartesian acceleration. Equation (14) specifies

“the desired second-order impedance control relationship.
‘Matrices M, C, and K describe the desired impedance

and are typically specified with scalar values M, C, and
K along the diagonal.- Equations (15) and (16) determine
the Cartesian position and velocity errors through the for-
ward kinematics, F(0,,), and the manipulator Jacobian,
J(0,,). The subscripts ¢ and m indicate commanded and
measured quantities of the joint and Cartesian position
vectors, @ and x.
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Without force feedback this control scheme is equiva-

~ lent to position control schemes such as Resolved Accel-

eration Control (Luh et al. 1980) and Operational Space
Control (Khatib 1980). These are first-order impedance
control schemes, since they only modify the stiffness and
damping of the arm. Including force feedback information
in the controller yields second-order impedance control
(Hogan 1985). Combining the above equations gives:

T =DJ M1 (CAx + KAx —f,,)

The description may be simplified by assuming that the
impedance matrices are diagonal in the Cartesian space
defined by the eigenvectors of A: In this case, AM™!
can be thought of as a matrix of mass ratios, A/M, along
the diagonal. Since A is due to the physical inertia of the
arm, it is the impedance parameter M that determines
each ratio. For M — 0, the ratio becomes very large;
for a small measured force, a large accelerating torque is
applied to the arm. Thus, the apparent inertia of the arm
is reduced. (It is important to remember that the external

plied to the arm. Thus, the apparent inertia of the arm is

changes not only the stiffness and damping properties of

-J7'J60 + b + g + )71, (17)  force does not contribute to the acceleration, because it
has been effectively negated by the J7f,, term.) Simi-
Or, e larly, for M* — oo, the ratio becomes very small; for a
T =J'AM™ (CAx + KAx — f,,) large measured force, a small accelerating torque is ap-
N T < T |

TAJ6 +h+g+JHn (18) increased. In this way, second-order impedance control

where _

’ D@) = JTAX)] (19) the arm, but its inertia as well.

and the matrix, A, is the Cartesian space representation
of the inertia matrix. The first form is necessary if the
inverse dynamics calculations expressed in equation (12)
are used. In this case, the inverse of the Jacobian and the
arm inertia must be calculated. The second form is useful
when employing the steady-state approximation in which
the manipulator inertia is assumed not to change or is not
known (Kazerooni et al. 1986). In this case, J as well as
h will equal zero also:

T =J'AM 1 (CAX+KAx —f,)) + g+ JT .. (20)

For the case of steady state, the inverse of the Jacobian
need not be calculated; only its transpose is necessary.
The arm inertia need not be calculated either, since only
its product with the inverse of the impedance mass para-
meter is needed, as will be explained shortly.
_Note that in manipulator model-based control, the
force feedback is used in two places. First, it is used
to compensate for the physical arm dynamics through
equation (12). This is equivalent to introducing end-
effector forces into the inverse dynamics calculations.
Second, the force feedback is used in the impedance re-
lation, equation (14). While equation (12) effectively
linearizes the dynamics of the arm, equation (14) modi-
fies the impedance control signal to compensate for the
experienced force.

It can now be seen that it is the force feedback in the

~ control signal that modifies the apparent inertia of the arm

(Hogan 1987). Equation (20) best shows this effect. The
premultiplication of K and C by AM~! changes nothing;
Ax and Ax are still multiplied by a gain. However,
things are made different by the force feedback signal f,,,.

‘It is multiplied by the term AM™!, which is a mass ratio

that reduces or increases the amount of actuator torque
applied.
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4.3. Explicit Force Control Within Impedance Control

The two second-order impedance controllers reviewed
above can be shown to contain explicit force control.
Previous to our research, some correspondence be-
tween impedance control and explicit force control has
been discussed, but the relation was not specifically or
clearly stated (Hogan 1987; Anderson and Spong 1988).
A general argument supporting our new interpretation was
presented in the introduction and elsewhere (Volpe and
Khosla 1993b). Now it will be shown explicitly for the
impedance controllers described previously in this article.
Consider the second-order impedance controller rep-
resented by equation (20). This can be rewritten in the
form:

T = JT [fc + Kfp(fc —fn) — Kvxm] +g (21

f. = K(X; — Xp) + Cx. (22)
Kfpp =AM —1 (23)
K, = AM~IC (24)

Again, the impedance parameters, K and C, may be spec-
ified in the frame in which A is diagonal. This makes the
gains diagonal and composed of the elements, K, C, and

K = (A/M)—1 (25)
K, =(A/M)C (26)

This formulation is very similar to the proportional gain
explicit force controller in equations (2) and (3). The
only difference is the presence of equation (22). How-
ever, when in contact with an environment of appreciable
stiffness, this equation reduces directly to commanding
force. First, the measured position, X,,, will be constant
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and can be set to zero. Typically this is because the sur-
face motion is smaller than the measurement resolution
of the manipulator (Volpe and Khosla 1994b). Second,
most contact occurs with surfaces that are stationary dur-
ing equilibrium, indicating that the commanded velocity
should be zero (X, = 0). This leaves only X, as nonzero.
It provides the commanded force by direct multiplication
with the stiffness, K. This means that the commanded
position is scaled to provide commanded force, which
could more simply be provided directly. Therefore, equa-
tion (22) may be eliminated, and the impedance controller
reduces directly to proportional gain force control. Since
all of the gains are diagonal and independently ‘adjustable,
this controller has an identical structure to the explicit
force controller in equation (3).

In the case of softer environments, the compression of
the surface by 6x,, will cause only a small change, éf.,
in the commanded force. The relative change is propor-
tional to the ratio of the arm stiffness to the environment
stiffness:

[6fc]  |6%xm| K

= . 27
|f0| Ixc - 6Xm, Ken'u ( )

Therefore, environmental stiffness at least an order of
magnitude greater than the arm stiffness will essentially
result in continued equivalence of the control schemes.
With environments that are known to be even softer,
if the commanded position is modified to compensate
for the surface compression, the schemes continue to
be equivalent. In the extreme case of an environment
with no appreciable stiffness, the equivalence breaks
down completely. However, force control is probably not
meaningful in this unconstrained situation.

Finally, the developed formulation not only shows
the equivalence of the two schemes, it also shows how
the target impedance mass relates to the proportional
force gain. Previously, the force gain was shown to be
Ky = (A/M) — 1, with a lower stability bound of
K o= —1 or

A/M > 0. (28)

This implies that the open loop pole location of the root
locus corresponds to the impedance parameter M — oo,
and the zeros indicate a value of M — 0. This also
means that large impedance target mass is the same as
small proportional force gain, and small mass is the same
as large gain.

5. Experimental Results

This section presents the experimental results of imple-
mentations of proportional gain force control with feed-
forward and second-order impedance control with and

without dynamics compensation. It will be seen that in

each case, the response and stability of the system are
essentially the same.

The experiments presented here were conducted with
the manipulator pressing down on an environment com-
posed of a cardboard box with an aluminum plate resting
on top, as described in Section 2. The parameters of a
second-order model of this environmental system were:
stiffness, k& ~ 10*N/m; damping, ¢ ~ 17 N-s/m; and
mass, m =~ 0.1kg (Volpe and Khosla 1994a).

All experiments were conducted using the CMU DD
Arm II. This manipulator has very straightforward dy-
namics, making the analysis and interpretation of exper-
imental results easier. Furthermore, the direct drive arm
has essentially frictionless joints, eliminating the pos-
sibility of intrinsic damping, which can add stability to
the system and hide problems inherent in the controller.
Controllers that perform stably with the DD Arm will
most likely remain stable on heavily geared and damped
systems, whereas the converse is not true.

The controllers were programed in the C language,
under the Chimera real-time operating system (Stewart
et al. 1992). The control rate was 300 Hz, except in the
case of dynamics compensation, where it was 250 Hz. All
graphs of data show the reference values as a dashed line
and the measured values as a solid line.

5.1. Proportional Gain With Feedforward Control

The first controller to be discussed is proportional gain
force control with the reference force feedforward, equa-
tions (2) and (3). Figure 8 shows the response of this
controller to the commanded force trajectory. In all exper-
iments the velocity gain was K, = 10. There are several
things to note about the response profiles to variations in
the proportional gain. First, as predicted by the model,
the system exhibits the characteristics of a Type 0 system:

_ finite steady-state error for a step input and unbounded

error for a ramp input. Second, for an increase in posi-
tion gain, the steady-state error reduces, but at the cost

-of increasingly larger overshoot. As correctly predicted

by the root locus of the system model in Figure 5, this
control scheme causes instability at K5 ~ 1. Also, the
fact that the environmental poles are always off the real
axis can be seen in the steady-state oscillations that occur
at the system’s natural frequency (~ 15 Hz), particularly
after the step input. Finally, it can-be seen that negative
proportional gains are increasingly more stable, but the

response of the system approaches zero as K, — —1.

5.2 Impedance Control

This section presents the results of implementing second-
order impedance control, with and without dynamics

Volpe and Khosla 581
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Fig. 8. eontinued. Experimental data of proportional gain explicit force control with feedforward. The proportional

gain varies from —0.75 to 1.

compensation. The position reference trajectories are cho-
sen such that, given the stiffness of the controller, the
trajectory should provide the same force profile as com-
manded for the proportional gain explicit force controller,
allowing a direct comparison with that controller.

5.2.1. Impedance Control Without Dynamics
Compensation

When in contact with a stiff environment, the manipulator
will not move very much or very quickly in the direction
normal to the environment. It was shown previously that
this enables a steady-state approximation, eliminating the
need to calculate the inverse dynamics and the inverse
Jacobian. The control law has the form of equation (20).
For these experiments X = 150N/m and C = 10
N/m-s. As discussed in Section 4.3, the mass ratio, A/M,
is equivalent to one plus the proportional force gain:

AM =1+ K, (29)

Using the values of K, from the explicit force control

experiments, corresponding values of A/M were chosen
to allow direct comparison of the measured response of
the impedance and force control schemes.

Figure 9 shows the response of this impedance con-
troller, as well as the commanded position trajectory
multiplied by the active stiffness in the same direction.
As is readily apparent, the response of this controller
is essentially equivalent to that of the proportional gain
controller shown in Figure 8. This confirms the previous
theoretical assertion.

5.2.2. Impedance Control With Dynamics Compensation

Second-order impedance control can also be implemented
with dynamics compensation as shown in equation (17).
In this case, equation (18) shows that the mass ratio
AM™! can be thought of as a proportional force gain.
However, it is seen from equations (12)—(14) that only M
is selectable in this scheme, since A is dependent on the
arm mass and configuration.

Usually M is chosen to be diagonal in the task frame
along with K and C: When operating in free space
(f,, = 0) a diagonal M acts as a simple scaling factor
for K and C, thereby preventing coupled motion. If M
were nondiagonal, its product with diagonal K and C
would be nondiagonal, and coupled motion would result.
Furthermore, K and C are usually chosen to be diagonal
in some task frame that is aligned with the environment
to be contacted. In this way, the manipulator may be
made stiff tangential to a surface, but soft normal to it.
The velocity gains are usually chosen for critical damping.

However, when in contact with the environment (f,, #-
0), the ratio of the inertias, AM™!, acts as a proportional
force gain that is not diagonal in general, because-A is
not generally diagonal in the task frame. Therefore, it is
necessary to determine the effective value of the mass
ratio (force gain). This requires finding the dominant
element of A for the direction in which the environment
is contacted.

Finding the dominant component of the inertia matrix
is equivalent to finding the effective mass in the direction
of concern. Since it is the force that is being controlled,
this can be done only by determining the resultant accel-
eration from an applied force:

% = A {30)
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The force may be set to be the unit vector in the direction
of the surface, which was the z direction in the exper-
iments performed. The actual values of equation (30)
were:

0.070. 0 —0.053 0 0 0o
0 1671 0 —9.723 —0.049 0110
4= —0.053 0 0199 0 0 0111
‘0 -9.723 0 59.9 —-1.272 oj|o
0 —0.049 0 —1.272 2758 010
0 0 0 0 03226(]0
€2))

It is apparent that for z direction forces applied to the
arm in this configuration, the dominant acceleration is
%, =~ 0.2m/s? Thus, the apparent inverse scalar mass
is A3;' &~ 0.2kg™l. This implies that the best scalar
approximation of the mass in the z direction is A, =
Ass =~ S5kg. This value may then be thought of as a
scaling factor applied to the variable gain value M, =
M3; in equation (17). .
Figure 10 shows the response of impedance control
with dynamics compensation for 0.1 < 1/M, < 045, or
equivalently, 0.5 < A/M < 225and —05 < Ky, <
1.25. (As with the previous tests, K = 150N/m and
C = 10N/m-s.) Thus, a direct comparison can be made
between the system response shown in Figure 10A—G and
that shown in Figures 8 and 9B—H. The responses are
very similar, supporting the previoﬁs»analytivcal assertions.

5.3. Impact Control

In the experimental data presented thus far, the lowest
gain values have exhibited the greatest stability. For pro-

portional gain explicit force control, this means negative
gain values. For impedance control, this means mass
ratios < 1. A compariscn of the root loci in Figures 4
and 7 shows that the low gain values place the complex
poles further left and closer to the real axis, reflecting
this greater stability. It has also been shown in the force
tracking experiments that the stability gained is offset by
a decrease in accuracy. There is one mode of operation
of a manipulator that requires maximal stability without a
great need for accuracy. This mode is impact control.

We have previously- proposed this form of impact con-
trol and shown its efficacy at maintaining stability during
the transition from motion through the environment to
contact with it (Volpe and Khosla 1991; 1993b). Some
of those results are reviewed here as further evidence of
the equivalence of proportional gain force control and
impedance control. Figure 11 shows the response of im-
pacts of the manipulator with the same environment. The
solid line is the measured force, and the dotted line is
the measured velocity. The dashed line is the reference’
force in the'explicit force control experiment and the ref-
erence position multiplied by stiffness for the impedance
control experiment. As can be seen, the same correspon-
dence exists for the impact results as existed for the force
trajectory following experiments. This further confirms
the equivalence of proportional gain force control and
impedance control. It also indicates that excellent im-
pact stability can be attained with these controllers, but
not with the same gains that work best force tracking.
We have shown that the impact period is best treated

“as a separate case, independent of motion through free

space or constrained application of forces (Volpe and
Khosla 1993b).

Volpe and Khosla ' 585




[~ ezFore_wi]
of = (OIS0 RetPL2} 007 | e
S T T N N T A W U S CR SRR e 1}
(a,) 1/M=0.1 Time(seconds)
“®
[ MiezForc_wir2) ,
° -==- {(0-150)*(RefP(2]-0.07))
S R T R I M TR R B TR A CHN R

() 1/M = 0.2 Time(seconds)

SR
H

Newtons

. —— MezForc_wd[2]
o b ((0-!50)‘(Ref?{2]-0.07))

".sluzzssuauis.s;‘};

(e) 1/ M=03 Time(seconds)

Fig. 10. Experimental data of impedance control with- dynamics compensation. The commanded inverse mass varies

k2]

—— MezForc_wd(2)
o (O-150)* RefP[21-0.07)

A

" " n " L N
3 35 4 45 5 355 6 65 7

R T KR R

(b) 1/M = 0.15 Time(seconds)

- MezForc_wd[2]
oF ===~ ((0-150)*(RefP{2]-0.07))

ST 15 2 15 3 35 4 A5 S 35 6 &5 7

(d) 1/ M = 0.25 Time(seconds)

— MezForc_wd{2}
oFf --=- ((0-150)*(RefP{2}-0.07))

So 5 1 45 1 35 3 35 4 45 5 35 6 65 7

(f) 1/ M = (.35 Time(seconds)

from 0.1 to 0.45. This is approximately the same as 0.5 < A/M < 2.25 and —0.5 < K5, < 1.25.

586

The International Journal of Robotics Research




Newtons

’ —— MezForc_wd(2}
o} --=- ((0-150)*(RefP{2]-0.07))
A T T R S T B U R B T S T oy e

(8) 1/M = 0.4 Time(seconds)

° .

& + | — MezForc_wd[2]

ol L {(0-150)*(RefP(2]-0.07))

55t

ot

st

ot
g al Il
i fie

® 'Il “[’“ l.‘\:“

»r A \ W WLLELEE

. |

10 B

s |

ol

S T B A ¥ R B TR R v R (R (A ¢ R

(h) 1/M = 0.45 Time(scconds)

Fig. 10. continued. Experimental data of impedance control with dynamics compensation. The commanded inverse
mass varies from 0.1 to 0.45. This is approximately the same as 0.5 < A/M <225and -05< K fp <125,

— MezForc_wd[2], (Newtons)
0 [} -... (MezXVel_wd{2]*100), (meters/second)
| [ = (-1.0)*(SHybrid[2]*RefForc{2])), (Newtons)

£ & & &

2 21 22 23 24 25 25 27 23 £9 3 3t

(a‘) Kfp = —0.75 Time(seconds)

——MezForc_wd|2]," (Newtoas)
~==~ (MezXVel_wd[2]*100), (ms)
—~ ((~600)*(RefP[2]+.106)), (Newtons)

©

]

£ &8 &

0
21 22 23 24 25 26 21 23 29 3

(b) A/M = 0.25 Time(seconds)
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response and are well suited for ensuring impact stability with the proper selection of control parameters.

6. Conclusions

The results presented in this article demonstrate that
second-order impedance control and proportional gain ex-
plicit force control with feedforward are essentially equiv-
alent. This leads us to question the value of impedance
control as a unified controller for motion through, and
constrained interaction with, the environment. Our con-
clusion that impedance control is not the best solution for
these modes of operation is illustrated by the following
discussion. :

First, it has been shown that proportional gain force
control is not the best force controller; integral gain
control provides much better tracking (Volpe and
Khosla 1993a). Therefore, the behavior of the impedance

controller while in contact with the environment is not
‘optimal and not always stable.

~ Second, impedance control is more cumbersome to use,
since it requires position reference instead of force refer-
ence. Some researchers see this as a strength, since there
is no need to switch inputs between the modes of free
space motion and constrained force application. However,
this implies there is knowledge of the position commands
necessary for a contact operation that intrinsically requires
force commands. '

Third, while not in contact with the environment,
impedance control continues to incorporate force feed-
back information into the control law. Phenomena such
as sensor noise or inertial loading by the end effector can
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cause nonzero force readings and inhibit the performance

- -of the position control (Volpe and Khosla 1994b).

Fourth, impedance control gains that are stable during
unconstrained and constrained actuation cause oscilla-
tion or instability during the transition phase of impact
(Volpe and Khosla 1993a,b). Adaptively modifying the
gains may provide a fix but detracts from the notion that
impedance control can work in all manipulation situ-
ations. Furthermore, if switching is to be employed, it
seems attractive to switch controllers as well as gains and
get the best performance possible from the system.

Therefore, the results of this work indicate two major
points. First, second-order impedance control must be

recognized as essentially-equivalent to proportional -gain——

explicit force control with force feedforward. Second, if
impedance control is to be used, it has inherent limita-
tions that make it something less than the best controller
for any given manipulation mode.
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